x^2+3x=676

Simple and best practice solution for x^2+3x=676 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+3x=676 equation:



x^2+3x=676
We move all terms to the left:
x^2+3x-(676)=0
a = 1; b = 3; c = -676;
Δ = b2-4ac
Δ = 32-4·1·(-676)
Δ = 2713
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{2713}}{2*1}=\frac{-3-\sqrt{2713}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{2713}}{2*1}=\frac{-3+\sqrt{2713}}{2} $

See similar equations:

| 3(3x–7)=–2(8–3x) | | 5x+5(1+x)=-5+5x | | 9(x+3)=x-6 | | g/2+11=21 | | 7/15=-(y/5) | | 142=1/3(3.14)r^2*142 | | -2x-1/3=23/3 | | g2+11=21 | | -8+4b=-8+4(8b-7) | | 9c/5=-14 | | -15/7p=-8 | | 9-4x=-1(2x+1) | | -27=2c–7-6cc= | | 7(2a-2)-4=1-5a | | -x-25=-10 | | 15x-9=13x-17 | | 6z+15=35 | | 2c–7-6c=-27 | | X/2-4=1/2(x-8 | | l^2-14l-196=0 | | -27=2c–7-6c | | 36=3u | | -10z-0.3=-20z+2.5 | | 0=(3b-1)(2b+5) | | 8x=6×-14 | | 5/x=15/21 | | 24=2x-13 | | -15=9r+1-77 | | -8y-2=7y-4 | | 4+14=-2(8x-9) | | y/2−7=2 | | 2(3x+5)=-47+3 |

Equations solver categories